Standard Specifications (Specifications for non-standard actuators, eg. HE-version, may vary)

Motor/Gear

24 VDC permanent magnet motor (max. current is 1.8 A, absolute max. voltage is 28 VDC)

Gear ratio		5	14	19	27	51	71
Maximum load	[N]	120	400	600	900	1600	2200
Speed at maximum load	[mm/s]	33	16	12	7.5	4	3

12 VDC permanent magnet motor (max. current is 3.6 A, absolute max. voltage is 14 VDC)

Gear ratio		14	19	27	51	71
Maximum load	[N]	400	600	900	1500	2000
Speed at maximum load	[mm/s]	16	9	7.5	3.5	2.5

Max. static load/ Self locking force

Temperature

PA brackets: 2000 N Alu/Stainless steel: 5400 N Depending on stroke length for push-applications Max. load limited to 1000 N for stroke lengths > 400 mm

Protection class

■ Operation: - 20 °C to + 70 °C ■ Storage: - 40 °C to + 70 °C

Cable specification 1 m, 2×0.52 mm² (AWG20), $\emptyset = 4.8$ mm, black, Molex Mini-Fit Jr. 6 pin 6 x cable diameter

Bending Radius Materials

Motor and actuator tube are powder coated steel

Piston rod is aluminum Front and rear brackets are PA

Max. 10 % or 2 minutes in use followed by 18 minutes rest **Duty cycle**

Color Black (RAL 9005)

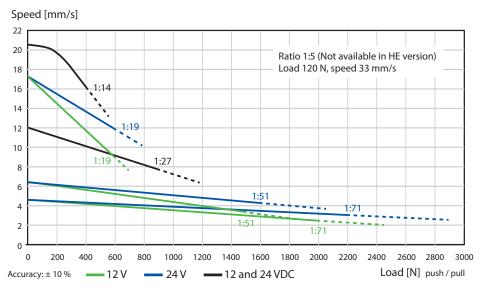
Stroke length/weight

Stroke	[mm]	50	100	150	200	250	300	350	400	500	750
Weight	[kg]	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.6	1.8	2.3

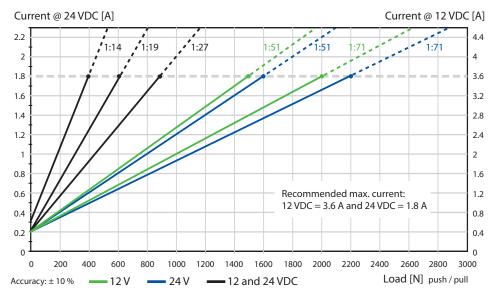
Actual weight may vary depending on model and options selected

Options

- Stainless steel versions (AISI 316)
- Brackets in aluminum or stainless steel
- Brackets with clevis
- Brackets with spherical bearings
- Piston rod available in black
- Hall sensors for positioning and/or synchronization
- HE (Harsh Environment) version (Ratio 1:5 not available). Tested according to IP68 and IP69 and passed the criteria for a depth of one meter for one hour. Test reports are available on request.
- Low noise version
- Other cable lengths (1 9 m)

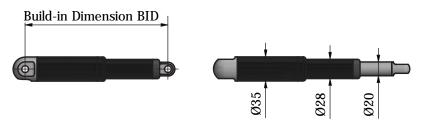

 Version certified according to IEC60601-1, ANSI/ AAMI/ES60601-1, CAN/CSA-22.2 No60601-1 available (24 VDC only)

On Request


- Available in all RAL colors
- Customized stroke lengths available
- Customized front and rear brackets
- Customized build-in-dimensions

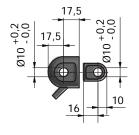
Contact Concens for any special requirements

Speed/Force


Force/Current Use in the dashed area is not recommended. Please contact Concens for further information.

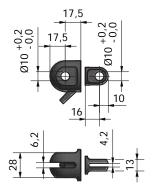
Dimensions

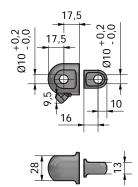
Axial backlash: +/- 0.5 mm


General dimensional variation: +/- 1 mm

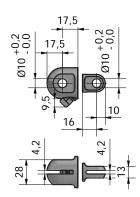
	Build-in Dimension 'BID'							
Gear Ratio	Standard	Clevis Rear	Hall	IEC/ANSI/AAMI/ ES/CAN/CSA- 22.2 No 60601-1	Harsh Enviroment			
5, 14, 19, 27 51, 71	160 + stroke 170 + stroke	+ 10 + 10	+ 10 + 10	+ 10 + 10	+ 11 + 11			

Stroke lengths > 400 mm: + 7 mm Stroke lengths > 700 mm: + 42 mm Stroke lengths > 750 mm + 100 mm (On request)

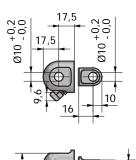

Standard Brackets


Polyamide (PA)

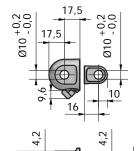
Max. static load 2000 N Max. load 900 N (gear ratio 1:27)


PA with clevis

Max. static load 2000 N Max. load 900 N (gear ratio 1:27)

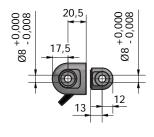

Alu

Max. static load 5400 N



Alu with clevis

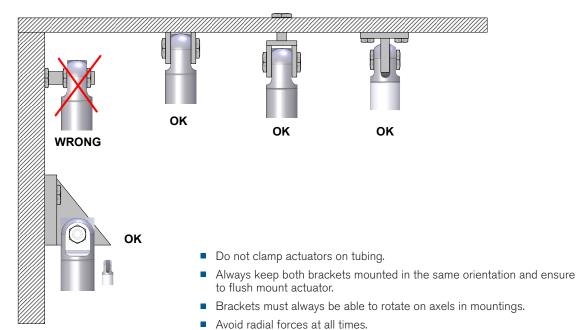
Max. load 5400 N



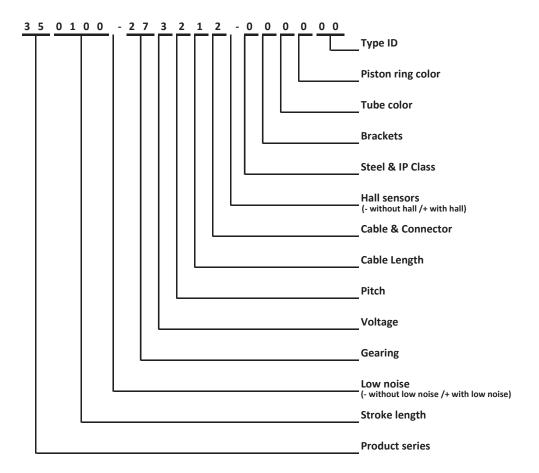
Stainless steel Max. static load 5400 N

Stainless steel with clevis

Max. static load 5400 N



Alu with spherical bearings


Max. static load 5400 N

Recommended Mounting Methods

Con35 Item Number Combination

Recommendations and warnings

- Never expose the actuator to hammer strike during installation or in other situations.
- Retrofitted bushings should be pressed into the bracket-borings. No hammering.
- Power supply without over-current protection can cause serious damage to the actuator at mechanical end-stop or when actuator is overloaded in another way.
- Keep piston tube clean.
- Longer cable lengths may cause voltage drop which affects the performance of the actuator.
- For medical applications (IEC60601-1, ANSI/AAMI/ES60601-1, CAN/CSA-C22.2 No60601-1): Operating temperature + 5 °C to + 48 °C, , Relative humidity 20 % - 70 % atmospheric pressure = 1 atm. Connect to medically approved supply source only and according to guidelines provided with the source.
- Function of the actuator is subject to the settings of the controller. If using your own controller please contact Concens.
- The dust and water sealing of HE (Harsh Environment) actuators might affect their performance.
- All specifications are for 25 °C ambient low temperature might affect performance.
- Depending on load and application, nominal and actual stroke length may differ due to internal disc springs not being fully compressed.
- The combination of gearing and stroke can cause limitations in the use of "End limit FW" when using the C2-30 control. See more in the datasheet for C2-30.

IFC 60417-5172

Class II equipment

ISO 7010-M002
Refer to instruction manual/booklet

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the
 responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

concenso

Concens A/S
Øresundsvej 7
DK-6715 Esbjerg N
Denmark

T +45 70 11 11 31 F +45 76 10 50 10 E info@concens.com VAT DK10132266

www.concens.com

Standard Specifications (Specifications for non-standard actuators, eg. HE-version, may vary)

Motor/Gear

24 VDC permanent magnet motor (max. current for ratio 4-14-17-24 is 8 A, ratio 49 is 7 A, ratio 84 is 4,5 A, absolute max. voltage is 28 VDC)

Gear ratio		4	14	17	24	49	84
Maximum load	[N]	500	1750	2200	3100	4500	4500
Speed at maximum load	[mm/s]	70	20	17	12	6	4

12 VDC permanent magnet motor (max. current for ratio 4-14-17-24 is 16 A, ratio 49 is 14 A, ratio 84 is 9 A, absolute max. voltage is 14 VDC)

Gear ratio		14	17	24	49	84
Maximum load	[N]	1400	1700	2400	4500	4500
Speed at maximum load	[mm/s]	14	10	6	3	3.5

Max. static load/ Self locking force PA brackets: 4700 N Alu/Stainless steel: 16800 N Depending on stroke length for push-applications Max. Load limited to 2000 N for stroke lengths > 400 mm

Temperature Protection class ■ Operation: - 20 °C to + 70 °C ■ Storage: - 40 °C to + 70 °C

Cable specification **Bending Radius**

1 m, 2 x 1.3 mm² (AWG16), \emptyset = 6.4 mm, black, Molex Mini-Fit Jr. 6 pin

6 x cable diameter

Materials Motor and actuator tube are powder coated steel

> Piston rod is stainless steel Front and rear brackets are PA

Duty cycle Max. 10 % or 2 minutes in use followed by 18 minutes rest

Color Black (RAL 9005)

Stroke length/weight

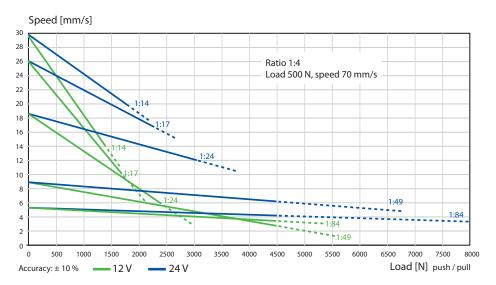
Stroke	[mm]	50	100	150	200	250	300	350	400	500	750
Weight	[kg]	2.1	2.3	2.6	2.8	3.1	3.3	3.6	3.8	4.3	5.6

Actual weight may vary depending on model and options selected

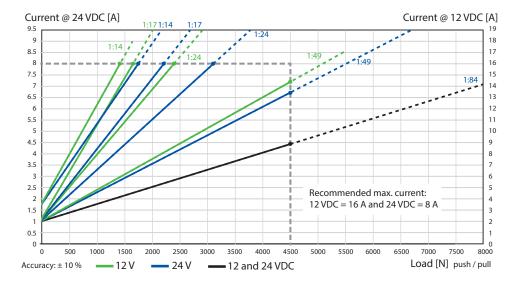
Options

- Stainless steel versions (AISI 316)
- Brackets in aluminum or stainless steel
- Brackets with clevis
- Brackets with spherical bearings
- Hall sensors for positioning and/or synchronization
- HE (Harsh Environment) version (gear ratio 1:4 not available) Tested according to IP68 and IP69 and passed the criteria for a depth of one meter for one hour. Test reports are available on request.
- Low noise version
- Spline and emergency lowering
- Other cable lengths (1 9 m)

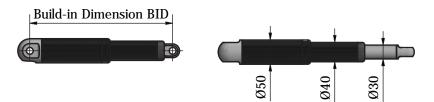
 Version certified according to IEC60601-1, ANSI/ AAMI/ES60601-1, CAN/CSA-22.2 No60601-1 available (24 VDC only)


On Request

- Available in all RAL colors
- Other stroke lengths available
- Customized front and rear brackets
- Customized build-in-dimensions

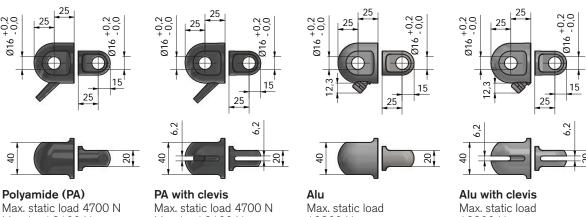

Contact Concens for any special requirements

Speed/Force


Force/Current Use in the dashed area is not recommended. Please contact Concens for further information.

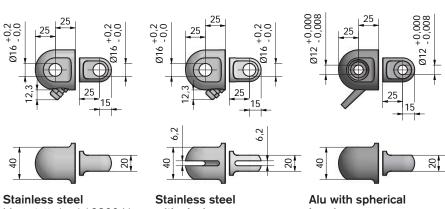
Dimensions

Axial backlash: +/- 0.5 mm


General dimensional variation: +/- 1 mm

Build-in Dimension BID								
Gear Ratio	Standard	Clevis Rear	Hall	IEC/ANSI/AAMI/ ES/CAN/CSA- 22.2 No 60601-1	Harsh Enviroment	Emergency lowering/spline		
4, 14, 17, 24	240 + stroke	-	+ 15	+ 15	+ 14	+ 23/+ 6		
49, 84 255 + stroke - + 15 + 15 + 14								
Stroke lengths > 750 mm + 100 mm (On request)								

Standard Brackets



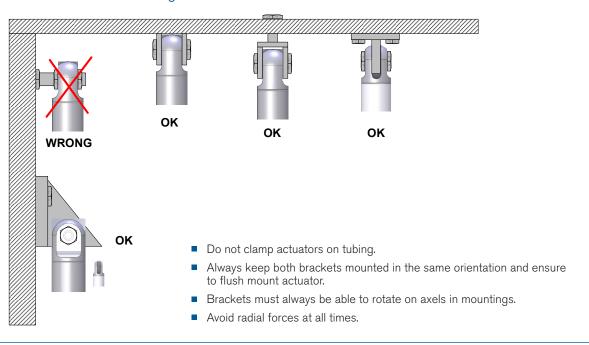
Max. load 3100 N (gear ratio 1:24)

Max. load 3100 N (gear ratio 1:24)

16800 N

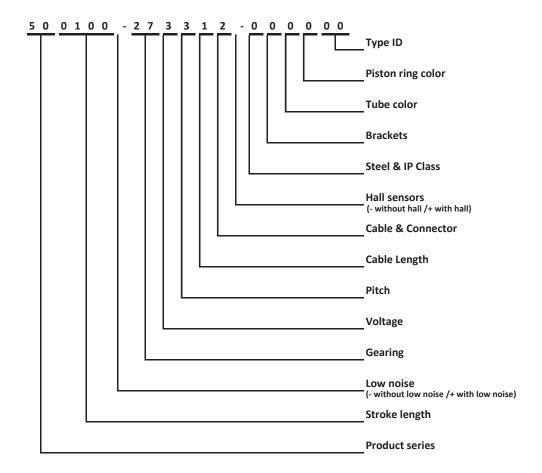
16800 N

Max. static load 16800 N


with clevis

Max. static load 16800 N

bearings


Max. static load 11000 N

Recommended Mounting Methods

Con50 Item Number Combination

Recommendations and warnings

- Never expose the actuator to hammer strike during installation or in other situations.
- Retrofitted bushings should be pressed into the bracket-borings. No hammering.
- Power supply without over-current protection can cause serious damage to the actuator at mechanical end-stop or when actuator is overloaded in another way.
- Keep piston tube clean.
- Longer cable lengths may cause voltage drop which affects the performance of the actuator.
- For medical applications (IEC60601-1, ANSI/AAMI/ES60601-1, CAN/CSA-C22.2 No60601-1): Operating temperature + 5 °C to + 48 °C, , Relative humidity 20 % - 70 % atmospheric pressure = 1 atm. Connect to medically approved supply source only and according to guidelines provided with the source.
- Function of the actuator is subject to the settings of the controller. If using your own controller please contact Concens.
- The dust and water sealing of HE (Harsh Environment) actuators might affect their performance.
- All specifications are for 25 °C ambient low temperature might affect performance.
- Depending on load and application, nominal and actual stroke length may differ due to internal disc springs not being fully compressed.
- The combination of gearing and stroke can cause limitations in the use of "End limit FW" when using the C2-30 control. See more in the datasheet for C2-30.

IEC 60417-5172 Class II equipment

ISO 7010-M002
Refer to instruction manual/booklet

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the
 responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

concenso

Concens A/S
Øresundsvej 7
DK-6715 Esbjerg N
Denmark

T +45 70 11 11 31 F +45 76 10 50 10 E info@concens.com

VAT DK10132266

Standard Specifications (Specifications for non-standard actuators eg. HE-version, may vary)

Motor/Gear

24 VDC power supply, permanent magnet motor (max. current is 11,5 A, absolute max. voltage is 28 VDC)

Gear ratio		19	43	66	81	100
Maximum load	[N]	1900	4300	6600	8100	10000
Speed at maximum load	[mm/s]	26	12	8	6	5

Max. static load/

Alu/Stainless steel: 18100 N

Self locking force

Depending on stroke length for push-applications Max. load limited to 5000 N for stroke length > 400 mm

Temperature

■ Operation: - 20 °C to + 50 °C ■ Storage: - 40 °C to + 70 °C

Protection class

IP66

Cable specification

1 m, 2×1.3 mm² (AWG16), $\emptyset = 6.4$ mm, black, Molex Mini-Fit Jr. 6 pin

Bending Radius

6 x cable diameter

Materials

Motor and actuator tube are powder coated steel

Piston rod is stainless steel

Front and rear brackets are aluminium

Duty cycle

Max. 10 % or 2 minutes in use followed by 18 minutes rest

Color Black (RAL 9005)

Stroke length/weight

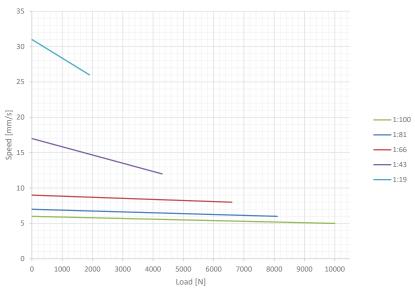
Stroke	[mm]	50	100	150	200	250	300	350	400	500	750
Weight	[kg]	4.1	4.4	4.7	5	5.3	5.6	5.9	6.2	6.8	7.6

Actual weight may vary depending on model and specifications

Options

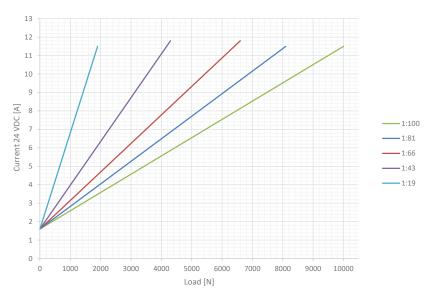
- Stainless steel versions (AISI 316)
- Brackets in stainless steel
- Brackets with clevis
- Brackets with spherical bearings
- Hall sensors for positioning and/or synchronization
- HE (Harsh Environment) version
 Tested according to IP68 and IP69 and passed the criteria for a depth of one meter for one hour.
 Test reports are available on request.
- Low noise version
- Spline and emergency lowering
- Other cable lengths (1 9 m)

 Version certified according to IEC60601-1, ANSI/ AAMI/ES60601-1, CAN/CSA-22.2 No60601-1 available


On Request

- Available in all RAL colors
- Other stroke lengths available
- Customized front and rear brackets
- Customized build-in-dimensions

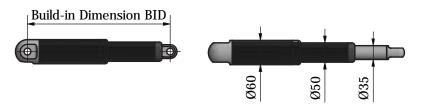
Contact Concens for any special requirements



Speed/Force

Accuracy \pm 10 %

Force/Current

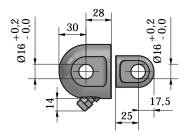


Recommended max. current: 24 VDC = 11,5 A. Accuracy \pm 10 %

Dimensions

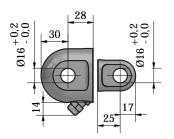
Axial backlash: +/- 0.5 mm

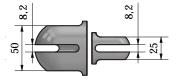
General dimensional variation: +/- 1 mm

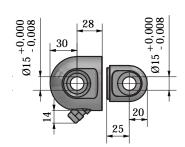


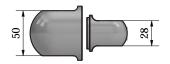
Build-in Dimension 'BID'								
Gear Ratio	Standard	Hall	Harsh Enviroment	Emergency lowering/spline				
All ratios	358 + stroke	+ 15	+ 25	+ 31/+ 10				
	0. 1 1							

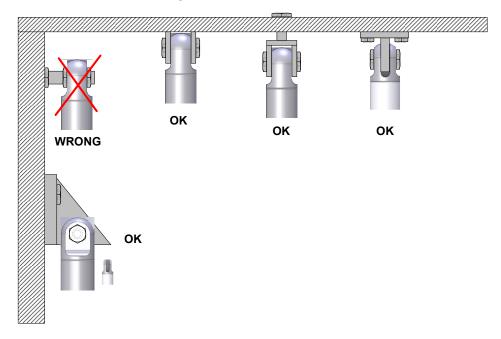
Stroke length > 400 mm + 25 mm not HE-version Stroke lengths > 750 mm + 100 mm (On request)




Standard Brackets

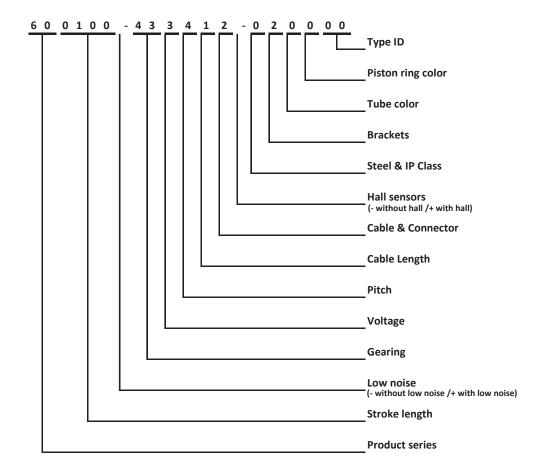



Alu/Stainless steel Max. static load 18100 N


Alu/Stainless steel with clevis Max. static load 18100 N

Alu with spherical bearings Max. static load 11000 N

Recommended Mounting Methods



- Do not clamp actuators on tubing.
- Always keep both brackets mounted in the same orientation and ensure to flush mount actuator.
- Brackets must always be able to rotate on axels in mountings.
- Avoid radial forces at all times.

Con60 Item Number Combination

Recommendations and warnings

- Never expose the actuator to hammer strike during installation or in other situations.
- Retrofitted bushings should be pressed into the bracket-borings. No hammering.
- Power supply without over-current protection can cause serious damage to the actuator at mechanical end-stop or when actuator is overloaded in another way.
- Keep piston tube clean.
- Longer cable lengths may cause voltage drop which affects the performance of the actuator.
- For medical applications (IEC60601-1, ANSI/AAMI/ES60601-1, CAN/CSA-22.2 No60601-1): Operating temperature + 5 °C to + 48 °C, Relative humidity 20 % 70 % atmospheric pressure = 1 atm. Connect to medically approved supply source only and according to guidelines provided with the source.
- Function of the actuator is subject to the settings of the controller. If using your own controller please contact Concens.
- The dust and water sealing of HE (Harsh Environment) actuators might affect their performance.
- All specifications are for 25 °C ambient low temperature might affect performance.
- Depending on load and application, nominal and actual stroke length may differ due to internal disc springs not being fully compressed.
- The combination of gearing and stroke can cause limitations in the use of "End limit FW" when using the C2-30 control. See more in the datasheet for C2-30.

IEC 60417-5172 Class II equipment

ISO 7010-M002 Refer to instruction manual/booklet

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the
 responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

concenso

Concens A/S
Øresundsvej 7
DK-6715 Esbjerg N
Denmark

T +45 70 11 11 31 F +45 76 10 50 10 E info@concens.com VAT DK10132266

www.concens.com

GB

DATA SHEET

C2-10

Control and protection of electric actuators

concenso - excellent electric actuators

The C2-10 is developed for controlled ON-OFF Operating and direction change of Concens actuators. The C2-10 has advanced current limit features. It limits the actuator current in start-up, braking and jam-situations and in that way protects the motor and the application. The C2-10 also has a fault in- and output which indicates error/over-current status and can be used to stop the actuator (for example if an emergency-stop switch is used). The C2-10 is only suitable for use with actuators without hall sensors.

The start and stop ramp times are individually adjustable to suit each application. In other words the motor voltage can be controlled to give a preferred smooth start and stop. When the C2-10 controller is without power, the motor is dynamically braked with so called short-circuit braking, i.e. the motor poles are connected together. The reverse and forward inputs can be set to work with negative or positive voltage by moving a jumper (See Fig. 3).

This datasheet is related to C2-10 firmware version 1.7 (v1.7) only.

Features

- Adjustable start ramp
- Adjustable stop ramp
- Adjustable current limit
- Continuous-mode, impulse-mode
- High momentary load capacity
- Easy interfacing to PLC etc.
- Connectors and terminals
- DIN-rail fittable
- Status LED

Technical Data

Supply 12/24 VDC (filtered max

ripple < 30 % @ full load)

Over voltage protection 40 V

Idle current Approx. 15 mA

Driving current 10 A continuous,

16 A with duty cycle 50 %

Max 16 A on duty 2 min

Current limit 0,5 ... 16 A

Current trip delay 20 ms

Start delay 5 ms

Voltage loss 0.5 V (I motor = 4 A)

PWM frequency 2 kHz

Ramps 0,1 ... 2,5 s

Manips 0,1 ... 2,0 5

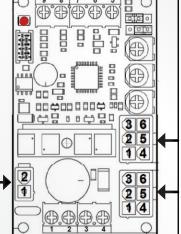
Digital inputs 'High' @ U_{in} 4 V \rightarrow supply voltage,

'Low' @ U_{in} 0 V → 1 V

Operating temp. (Ta) -20 °C to +60 °C

Weight 36 g

Dimensions 73 x 42 x 26 mm (L x W x H)



IG. 1 WIRING FOR C2-10

Molex 2-pin connector for power supply

Pin 2: 12/24 VDC Pin 1: GND

Note: If the power consumption is higher than 8 A continuously, screw terminals must be used due to the size of leads in layout. Pin 1 is Supply GND, Pin 2 is Supply + (12 VDC/24 VDC).

Molex 6-pin connectors with same connection for

both actuator and control.

House type for cable: 5557 Terminal type: 5556

Pin 1: Actuator +

Pin 2: Control: Common (GND)

Pin 3: Control: Rev/In

Pin 4: Actuator - Pin 5: Fault in/out

Pin 6: Control: Fwd/Out

Note: If actuators with hall sensors are used with these connectors, the 4 hall wires must be disconnected

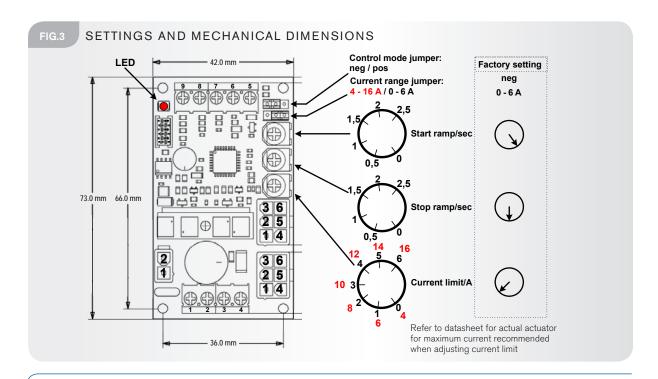
General

Status LED signals:

Fast blink:	Current trip
Four blinks:	Overvoltage
Solid light:	Overtemp
One long blink followed by two short blinks:	Fault input active

The C2-10 has a 'trip' feature that cuts the motor voltage if the current limit value is exceeded (after trip delay of 20 ms). After trip the motor can only be started in the opposite direction. Additionally the C2-10 provides 'kick-start' which translates to 100 ms at full speed (100 % PWM). Current limit during kick-start is up to 55 A.

If the actuator is stopped without going into trip mode, the C2-10 controller will allow 50 % higher current from start and until 500 ms after ending start ramp (see timing figure).


The fault terminal is both input and output (see fig. 2). During normal operation the signal is pulled high to 5,4 V on the C2-10 board in series with a 100 k Ω resistor. When a fault occurs the fault terminal changes to low voltage (GND via 100 Ω resistor).

Screw Terminals

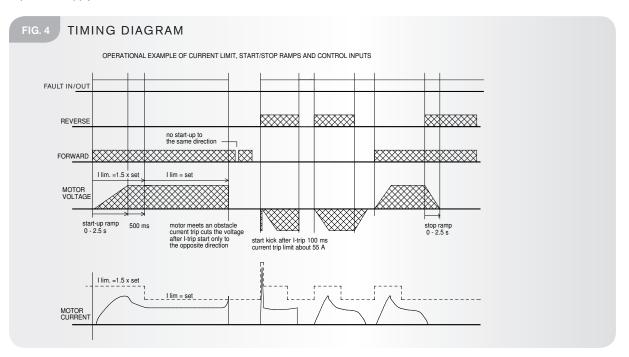
- 1 Supply GND
- 2 Supply + (12/24 VDC) fuse required
- 3 Actuator + red wire
- 4 Actuator black wire
- 5 + 5,4 V output for control-use max. 10 mA load
- 6 Fault in- and output
- 7 Reverse (Rev/In) signal input (0,5 mA)
- 8 Forward (Fwd/Out) signal input (0,5 mA)
- 7+8 Used to activate the actuator reverse and forward. Please refer to description of 'Control mode' on page 3
- 9 GND for control-use (not to be used as supply input)

FIG. 2 CIRCUIT DIAGRAM 5,4 V 100 kΩ fault in/out (terminal 6) representation of the second of t

Control mode

When jumper is put in mode 'neg' (left hand side) a negative (GND) signal is put on terminal 7 and 8 to

When using 'neg' mode, terminal 9 can be used as the negative supply.


When jumper is put in mode 'pos' (jumper in right side) a positive (> 4 V) signal is put on terminal 7 and 8 to run motor.

When using 'pos' mode, terminal 5 can be used as the positive supply.

NOTE: When using the connectors for remote control, the jumper MUST be in 'neg' mode (left side).

Input current for reverse & forward control is 0.5 mA.

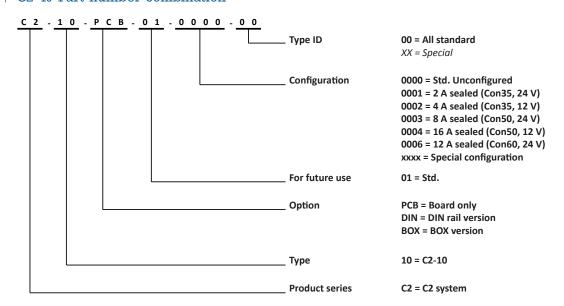
Parameter #1 is as default set to '0' which enables 'continous mode'. If #1 is changed to '1' 'impulse mode' is enabled. Use C2-USB/C2 Config Tool Light for changing. Warning: Do not change other parameters.

C2-10-PCB-00-0000-00

board alone, weight 36 g 73 x 42 x 26 mm (L x W x H)

C2-10-DIN-00-0000-00

DIN rail version, weight 66 g 90 x 46 x 56 mm (L x W x H)



C2-10-BOX-00-0000-00

BOX version, weight 64 g, IP55 102 x 73 x 47 mm (L x W x H)

BOX-version is not for use with Molex Minifit, only open ends.

C2-10 Part number combination

Recommendations and warnings

- Attention! C2-10 controller has no fuse in it. Use external fuse according to application.
- If C2-10 goes into "trip" (overcurrent), it is only possible to run actuator in opposite direction.
- Please adjust the max. current to be 10 % higher than maximum current during running the actuator. This ensures the best possible conditions for mechanical and electrical longevity.
- It is very important to ensure that the power supply for the controller is capable of supplying sufficient current otherwise the controller and the actuator may be damaged.
- Double-check correct polarity of power supply. If wrong connected, the C2-10 will be damaged.
- If wire colors differ from what is expected, please check with supplier or check on our YouTube channel before connecting the actuator to the controller.
- Braking load resistor (C2-A23) for surpressing flyback is available.

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the
 responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

concenso

Concens A/S
Øresundsvej 7

DK-6715 Esbjerg N

Denmark

T +45 70 11 11 31

F +45 76 10 50 10

E info@concens.com

VAT DK10132266

DATA SHEET

C2-20

Advanced Actuator Controller

The C2-20 actuator controller provides advanced positioning and control of actuators through easy and flexible integration with the application. The controller is designed to work with Concens electrical in-line actuators in applications where positioning is required. C2-20 has adjustable start and stop ramps, which make smooth starts and stops possible. The C2-20 works in conjunction with actuators with hall only.

Adjustable current limits in both directions protect the motor against overcurrent. In learning mode the number of hall pulses in a full stroke of the actuator is counted which enables accurate positioning during normal operation.

The position of the actuator is controlled by a DC voltage between 0 - 5,4 V or 0 - 10,8 V to the C2-20. Adjustments and parameter settings like current limit value, ramp times, speed etc. are set with C2-PROG interface unit or C2-USB "dongle" connected to a PC. Both must be connected to the red connector on the PCA.

This datasheet is related to C2-20 firmware version 2.6 (v2.6) only.

Features

- Precise position control from analog voltage input
- Adjustable start ramp
- Adjustable stop ramp
- Settable current limit
- High efficiency
- High momentary load capacity
- DIN-rail base fittable
- "Position reached" signal
- Learning cycle in both directions. Kick start after I-trip

Technical Data

Supply voltage 12/24 VDC

Ripple Less than 20 %

Actuator current

continuous max $15 \text{ A} (Ta < 60 \,^{\circ}\text{C})$

Actuator current max 20 A (short time)

Current limit adj. 0.1 - 20 A

Overheat limit 100 °C

PWM frequency 2 kHz

Hall input freq. Max 1 kHz

Input control logic High = 4 - 30 V,

(pos.) Low = 0 - 1 V or open

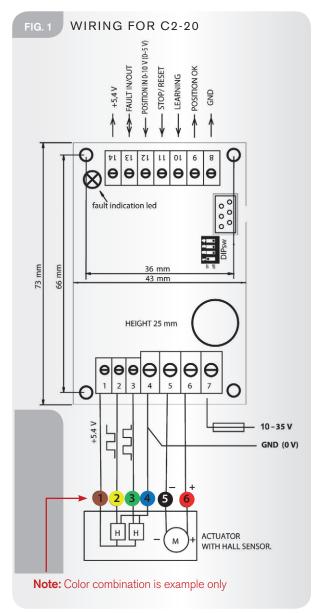
Control input

impedances typ. 30 k Ω

Motor and supply

connectors 2.5 mm wires max Control connectors 1 mm wires max

Dimensions 73 x 43 x 25 mm


 $(L \times W \times H)$

Weight 63 g

Operating temp. (Ta) - 20 °C to + 60 °C

Idle current 45 mA

FIG. 2 CIRCUIT DIAGRAM VCC fault in uP fault out (terminal 13)

Screw Terminals

- 1 Supply for hall sensors (+ 5,4 V output)
- 2 Hall channel A
- 3 Hall channel B
- 4 GND (0 V) and GND for hall
- 5 Actuator –
- 6 Actuator +
- **7 Supply** 12/24 VDC (fuse required)
- 8 GND (0 V)

9 Position OK

Digital output 5,4 V through 1 $k\Omega$ when wanted position is reached and low during travel.

Note: If "stop ramp" is very long, then POSITION OK signal can be difficult to reach, since the motor only gets very low power to reach within the "dead zone"

10 Learning

Digital input (> 4 V and max supply voltage) starts "learning". Rin $47 \text{ k}\Omega$

11 Stop/Reset

Digital input (> 4 V and max supply voltage) Stops the motor and resets any fault. Rin 47 $k\Omega$

12 Pos. Set

Analog input

DIPsw 1 on = 0 - 10.8 V

DIPsw 1 off = 0 - 5.4 V

DIPsw 2 - 4 not used, must be set to off Rin 30 $\text{k}\Omega$

13 Fault IN/OUT

NPN open collector max 100 mA can be connected to other C2-20 modules, thereby all modules connected will stop if one module sends a FAULT signal. If wire length is more than 1 meter, a 10 k Ω pull-up resistor connected to supply is recommended. Diagram in FIG. 2

Pin13/	Vcc = 12 VDC	Vcc = 24 VDC
No fault	9,3 V	15,3 V
Fault	0 V	0 V

14 + **5,4 V** output, max 10 mA

Wiring and Settings

First run the learning cycle and then do the settings with serial interface unit "C2-PROG" or PC. Default values in ()

1/15 Speed: 35 - 100 % <=> 35-100 (100)

2/15 Learning speed: 35 - 100 % <=> 35 - 100 (50)

3/15 I-limit "forward": 0,1 - 20,0 A <=> 1 - 200 (20)

4/15 I-limit "reverse": 0,1 - 20,0 A <=> 1 - 200 (20)

Notice! Current limits are 1.5 times higher during start ramp and 1 sec. thereafter

5/15 I-trip enable: 0/1 <=> off/on (1)

6/15 I-trip delay: 0 - 255 ms <=> 0 - 255 (5)

7/15 Load compensation: 0 - 255 <=> 0 - 255 (0)

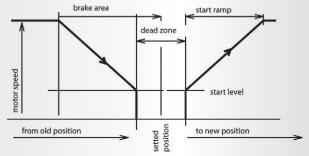
8/15 Pulse lost timeout: $1 - 5 s \le 1 - 5 (2)$

9/15 Start value: $0 - 50 \% \le 0 - 50 (30)$

10/15 Hour/Start count reset: 0 - 1, reset when set to 1

11/15 Stop ramp: 0,0 - 20,0 % <=> 0 - 200 (50)

12/15 Dead zone: 0,0 - 10,0 % <=> 0 - 100 (10)


13/15 Range scale in: $+0.0 - 50.0 \% \le 0 - 500 (7)$

14/15 Range scale out: $-0.0 - 50.0 \% \le 0 - 500 (70)$

15/15 Start ramp: $0,1 - 5 s \le 0 - 500 (100)$

- **Speed** limits the maximum speed.
- **Learning speed** sets the learning cycle speed. (FIG. 4)
- I-limits are individual for reverse and forward directions. Refer to datasheet for actual actuator for maximum recommended current when adjusting.
- I-trip enables the trip function, so that motor will be shut down when the set I-limit is exceeded. Motor has to be started in opposite direction
- I-trip delay defines the reaction time for trip.
- Load compensation increases the torque at low speed. Note that over-compensation will cause oscillation and twiching of the motor.
- Pulse lost timeout stops motor after the set time without pulses.
- Start value is a voltage level for start (% of full), this ensures that the motor gets an adequate voltage to start properly, but note that too high start level will cause motor vibration (FIG. 3).
- Stop ramp is proportional value of the full stroke. In low speed application good value is near 1 %, and in high speed solution it can be near to 20 % (FIG. 3).
- **Dead zone** is steady area, suitable size of this zone depends on the mechanical accuracy of the system, this value is also a ratio of the full stroke (%) (FIG. 3).
- Hour/Start count reset makes possible to set the hour/start counter
- Range scale adjustment is for scaling of the stroke, with this the scale can be adjusted after learning. The reverse and forward ends are individually scaleable to get the suitable mechanical stroke for set value from 0 - 10 V (0 - 5 V) (FIG. 5).
- **Start ramp** (soft-start) defines the time before reaching full speed.

POSITIONING WINDOW

LEARNING CYCLE 0 V 10 V in = 0 % out = 100 %

RANGE SCALING range adi. in + 20 % range adi, out - 20 % in = 0 %in = 20out = 80 % out = 100 % 10 V (5 V + 20 % - 20 % 10 V (5 V) 01

Status Led Signals

- 1. Fast blinking = Stopped due to current limiter active
- 2. Slow blinking = Overtemperature
- 3. 2 x short, mid, long... = Hall pulse lost
- 4. 4 x fast blinking (burst), pause = Overvoltage
- 5. 1 x long, 2 x short = Fault in active
- 6. LED permanent on = Learning not completed, new learning required
- Start learning by giving an impulse to learn input (10).
- Motor starts to run "out" direction with learn speed.
- Current limit stops the motor when mechanical end is reached.
- Motor starts to "in" direction and makes a full stroke. During stroke the pulse counter measures the range.
- Motor reaches the mechanical end "in", and current limit stops the motor.
- Device stores full range value and is ready for use.
- The learning cycle can also be performed in the opposite direction, starting travelling inwards.
- 1. Original learned range = mechanical full range equals the signal range 0 - 10,8 V (0 - 5,4 V)
- Modified range example: If range scale in = +20 % and range scale out = - 20 %. now stroke of actuator is compressed to: positioning set value 0 V = 20 % position positioning set value 10,8 V (5,4 \dot{V}) = 80 % position

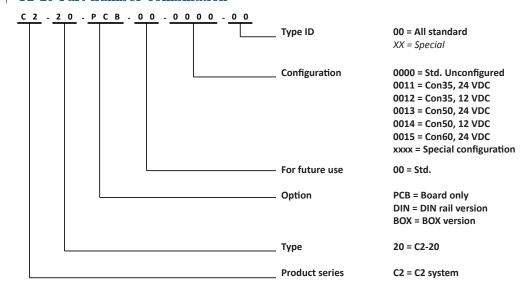
C2-20-PCB-00-0000-00 board alone, weight 63 g 73 x 43 x 25 mm (L x W x H)

C2-20-DIN-00-0000-00 DIN rail version, weight 93 g 90 x 46 x 56 mm (L x W x H)

Optional as Box version

C2-20-BOX-00-0000-00

BOX version, weight 130 g, IP55 101 x 73 x 48 mm (L x W x H)



Accessories:

- C2-USB
- C2-PROG
- C2-Minifit-adaptor

Note orientation of connector-pin/hole in PCB

C2-20 Part number combination

Recommendations and warnings

- Attention! C2-20 has no fuse in it. Use external fuse according to application.
- If C2-20 goes into "trip" (overcurrent) it is only possible to run actuator in opposite direction.
- Please adjust the max. current to be 10 % higher than maximum current during load. This ensures the longest actuator lifetime.
- Please ensure that the power supply for the controller is capable of supplying sufficient current otherwise the controller and the actuator may be damaged.
- Double-check correct polarity of power supply. If connected wrong the C2-20 will be damaged.
- If wire colors differ from what is expected, please check with supplier or check on our YouTube channel before connecting the actuator to the controller.
- Connect to power during programming.

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

concenso

Concens A/S Øresundsvej 7 DK-6715 Esbjerg N Denmark

T +45 70 11 11 31 F +45 76 10 50 10 E info@concens.com

www.concens.com

VAT DK10132266

DATA SHEET

C2-30

Advanced Actuator Controller

The C2-30 is designed for operating two Concens actuators in parallel. Synchronization is achieved by adjusting actuator speed during operation.

Failure to synchronize will result in the actuators stopping, this way possible mechanical stress and breakage can be avoided. Additionally the C2-30 includes current limiter and power stage temperature protection. The C2-30 has adjustable start and stop ramps for smooth operation. The C2-30 works in conjunction with actuators with hall sensors only.

The basic control is done with Forward-, Backward-, and Stop-commands, either in continous mode or pulse mode.

Calibration input is for operating the system to its initial position. This is done with low speed.

A wide range of parameters can be altered to suit to different demands and applications.

The parameters are set by using the handy interface C2-PROG or by using the C2-USB dongle and your computer. Both must be connected to the red connector on the PCA.

This datasheet is related to C2-30 firmware version 2.5 (v2.5) only.

Features

- Synchronized
- Current and temperature protection
- Settable drive speed
- Adjustable start- and stop ramp
- Different control modes
- Wide range of parameters
- Easy setting with serial interface
- Good repeatability of settings
- Autobalance feature

Technical Data

Supply Voltage 12/24 VDC, filtered

less than 20 % ripple

Quiescent current 15 mA

Motor current 2 x 10 A cont. 2 x 20 A

25 % duty

PWM frequency 2 kHz

Current limit 1 - 20 A

Temperature limit 120 °C (Power stage)

Ramp times 0 - 2 sec
Pulse input freq. max. 1 kHz

Pulse inputs pull-up/down 10 $k\Omega$

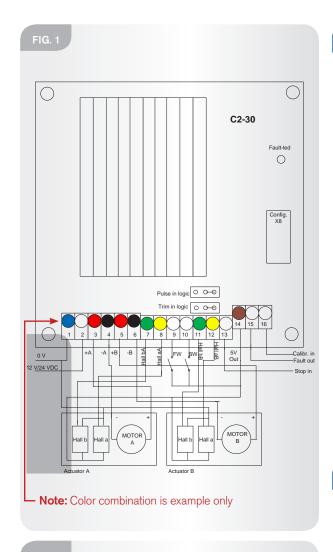
(Hi/Lo; 4 - 30 V/0 - 1 V)

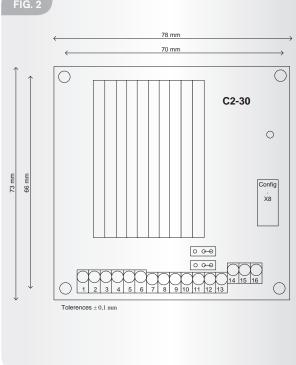
Control inputs 0 - 1 V = OFF; 4 - 30 V = ON

(impedance 10 k Ω)

Fault output Active, pull down max. 50 mA

Aux. voltage output 5,4 V/20 mA


Dimensions 78 x 73 x 25 mm (L x W x H)


Operating temp. (Ta) - 20 °C to + 60 °C

Weight of board 106 g

CE Electromagnetic compatibility Industrial Environment

Screw Terminals

- 1 GND (0 V) + (blue wire for hall)
- 2 Supply 12/24 VDC (fuse required)
- 3 Actuator A +
- 4 Actuator A -
- 5 Actuator B +
- 6 Actuator B -
- 7 Hall b motor A (green)
- 8 Hall a motor A (yellow)
- 9 Forward(out) pos. command only
- 10 Backward(in) pos. command only
- 11 Hall b motor B (green)
- 12 Hall a motor B (yellow)
- **13 Stop**, input for external stop input Pos. command only.
- **14 5,4 V/20 mA output for Hall and controls** e.g. FW/BW command (brown wire for hall)
- **15** Fault output, active low on alarm. Open collector.
- **16 Calibration**, pos. command starts calibration routine.

Connect motors and supply as in picture.

Inputs/Outputs

- Pulse A and B are for incoming feedback pulse-lines. Parameter 13 must be set to "1".
- FW & BW are command inputs forward/backward.
- **STOP** input is for the use of external stop command (eg. end switches).
- Calibration input is for starting the calibration routine.
- FAULT output refer to fault situations on page 3
- INPUTS: 4 V 30 V as "high" signal level and 0 V 1 V as "low" signal level
- OUTPUT: NPN open collector max. 50 mA

Parameter Discription

- Running Speed is the speed which is used in normal mode.
- Calibration Speed is the low speed used during calibration-
- Start- and stop ramps define the acceleration and deceleration time from 0 - 100 % and back to 0 speed.
- Current limit is limit value for current trip. If current value is exceeded the motors will be stopped. During the period of start ramp + 1 sec the current limit is 1,5 times the current limit set value. Refer to datasheet for actual actuator for maximun current recommended when adjusting. Current limit value goes for both actuators (when limit is set to 20 it means 2 A for each actuator).
- Difference limit is the value for largest allowable difference between A an B pulse counters. If value is exceeded motors will be stopped.
- Adjust behavior defines how fast and intensively the controller will adjust the synchronization between motors A and B. Smooth 1 \rightarrow Aggressive 10.
- I-trip-indication fault output can be set to "on" (default) also in current trip situation.
- Start condition enables the device to re-start the motor to both or only to opposite direction after a trip or stop situation.
- Control Mode sets the control-mode. In continuous mode the motor runs as long as command (fw or bw) is "on". In impulse mode a short command starts the motor and the direction is changed with opposite command. Motor will stop only with "stop" command. In "Impulse-2" mode motor starts with short (fw/bw) impulse. Following command stops the motor, and next command (fw/bw) starts the motor again. In "Continous (4)" mode actuators run as long as buttons are activated and during calibration buttons must be activated too. Of course, in all modes the difference limit, current limit and stop-command will stop the motors.
- Safety Reverse means automatic reverse run if the actuator has been stopped as a result of overload = I-trip. Stop input also triggers this function.
- Auto-balance trigger parameter value sets the starting point for auto balance. Value is the number of pulses counted from mechanical home.
- **Double pulse mode** enables the controller to handle actuators with double hall pulses. Must always be enabled when using Concens actuators.
- End limit fw is a pulse counter "end stop" for fw direction. The positions is determined in pulse edges from 1-65535. Value 0 means that end stop is not in use. Note: This feature cannot be used in all combinations of gear ratio and stroke length due to number of pulses may exceed 65535.

	con35		con50		con60
Gear ratio I	max. stroke/mm	I	max. stroke/mm	I	max. stroke/mm
5	6325	4	12295	19	3489
14	2385	14	3510	43	1528
19	1706	17	2835	66	997
27	1220	24	2047	81	805
51	643	49	1003	100	653
71	460	84	585		

These are the maximum stroke lengths where "End limit FW" (65535) can be used.

■ Auto balance starts balancing routine before mechanical endstop. The trigger point is set with parameter 12. If "auto balance" is active it balances the system automatically in the end of stroke. This will prevent the possible pulse error accumulation. Auto balance always works to the calibration direction.

■ Calibration routine is a calibration cycle for balancing the system. Calibration can be started by giving fw and bw commands at the same time for 3 sec or with incoming signal to calibration input. Calibration routine can be interrupted with new FW or BW command or signal to STOP input. When calibration routine starts, both motors start to run to same direction and will run until current limit stops the motor or pulses stop coming. During the calibration routine the fault led is blinking slowly. When blinking stops and both motors have stopped the device has reset the pulse counters. Now the devise is ready for use. If there is need to change the calibration direction, swap the motor wires and the hall wires.

Status LED signals

Motor is jammed (current trip), pulses disappear or pulse counter difference is too high (difference limit). The controller will stop the motors and FAULT output will be pulled down (also in I-trip if indication is enabled). When motor is restarted the FAULT output is reset. Faults are also indicated with fault-led as follows:

- 1 blink = position corrupted(calibration needed)
- 2 blinks = current trip
- 3 blinks = pulses disappear
- 4 blinks = difference limit
- 5 blinks = temperature protection

Jumpers

The Jumpers must be set to the most right position. (See FIG. 1)

Monitoring

During normal use it is possible to monitor the function of controller with the C2-PROG. Select the monitor mode in C2-PROG and you can check the following values:

1 current, Motor A 10 - 250 = 1 - 25 A

2 current, Motor B 10 - 250 = 1 - 25 A

3 pulse count/run cycle, only motor A

4 pulse count difference

5 position counter A 0 - 65535

6 position counter B 0 - 65535

Feedback Pulses

The controller counts pulse edges so counted value is double compared to the actual number of pulses.

Parameter List

Connect C2-PROG or PC to the Config-connector. This must be done with power on. C2-PROG displays the type of the device. Push the select button and you can scan the parameters with arrow buttons. Parameters are changed with +/- buttons. Store new settings with save button (press and hold for more than 5 sec).

Parameter list with:	Quality	Set range	Default
1 Running speed	40 - 100 %	40 - 100	100 (%)
2 Calibration speed	20 - 60 %	20 - 60	60 (%)
3 Start ramp	0 - 2 sec	0 - 20	0.5 (sec)
4 Stop ramp	0 - 2 sec	0 - 20	O (sec)
5 Current limit	1 - 25 A	10 - 250	20 (2 A)
6 Difference limit	3 - 50 pulses	3 - 50	10 (pulses)
7 Behavior	smo -> aggr	1 - 10	5
8 I-trip indication	disa = 0; $ena = 1$		1
9 Start condition	both $dir = 0$; only rev if I-trip = 1;		
	only rev if stop $= 2$; only rev $= 3$		1
10 Control mode	cont = 1; impuls = 2; impuls -2 = 3	3;	1
	Cont + cont calibration = 4		
11 Safety reverse time	ty reverse time disa = 0; 1 - 30 reverse time after I-trip		
12 Auto balance trigger disa = 0; 1 - 255 trigger point active			O (pulses)
13 Double pulse mode	disa = 0; $ena = 1$		1
14 End limit FW disa = 0; FWD end limit = 1-65535			O (pulses)

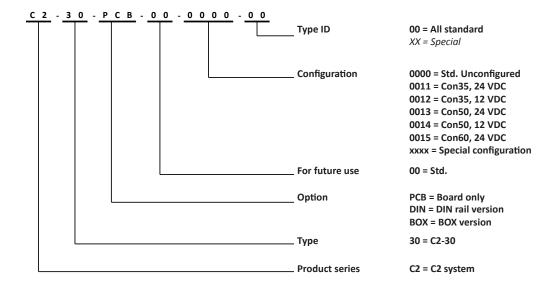
C2-30-PCB-00-0000-00Board alone, weight 106 g

78 x 73 x 25 mm (L x W x H)

C2-30-DIN-00-0000-00DIN rail version, weight 148 g

90 x 85 x 54 mm (L x W x H)

Optional as Box version


C2-30-BOX-00-0000-00BOX version, weight 212 g, IP55
104 x 104 x 47 mm (L x W x H)

C2-Minifit-adaptor
C2-PROG Programming Unit
C2-USB Programming Cable for PC
Note orientation of connector-pin/hole in PCB

Accessories:

C2-30 Item Number Combination

Recommendations and warnings

- Attention! C2-30 has no fuse in it. Use external fuse according to application.
- Please adjust max current to be 10 % higher than maximum current during load to ensure the longest actuator lifetime.
- Please ensure that the power supply for the controller is capable of supplying sufficient current otherwise controller and actuator may be damaged.
- Double-check correct polarity of power supply. If connected wrong C2-30 will be damaged.
- If wire colors differ from what is expected, please check with supplier or check on our YouTube channel before connecting the actuator to the controller.
- Connect to power during programming.

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the
 responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

Concens A/S
Øresundsvej 7
DK-6715 Esbjerg N
Denmark

T +45 70 11 11 31 F +45 76 10 50 10 E info@concens.com VAT DK10132266

DATA SHEET

Battery Based Actuator Control System

The C4 system is a versatile solution for the control of electric actuators. The unique design, strong power supply system and the option of controlling multiple actuators makes the C4 system ideal for use in various applications. Certified to medical standard (IEC60601-1).

The C4 system consists of:

- Controller
- Handset
- Battery
- Battery charger

The C4 solution is designed for optimal flexibility making configuration, programming and installation very easy. Additionally, service and replacement of e.g. batteries are extremely easy with the patented magnetic principle. No tools are required.

The C4 Controller is designed to handle up to four actuators in groups, synchronous or individually. It is controlled with a wired handset, which can be delivered in five different button layouts depending on customer needs. Furthermore, the C4 can be equipped with an external emergency stop.

The C4 system contains a rechargeable 24 VDC NiMh or Li-lon battery, enabling the actuator solution to be fully mobile.

Standard C4 solution includes IP50 protection with IP65 protection available.

This datasheet is related to C4 firmware version 659 (v659) only.

Features

- 4-channel fully programmable controller
- Battery powered for mobile use
- 24 VDC NiMh or Li-Ion replaceable battery
- Patented battery system
- Customized colors and foil design
- Wired handset
- Adjustable soft- start and stop
- Adjustable current limit in and out
- Adjustable calibration speed and current
- Adjustable virtual min/max-position
- Individual or synchronous operation for drive 2 - 3 - 4 or 2 + 2 actuator
- Audible and visual status signal
- Version certified according to IEC60601-1, ANSI/AAMI/ES60601-1, CAN/CSA-22.2 No60601-1 available (24 VDC only)

Technical Data

Supply 24 VDC NiMH

or Li-Ion battery

Idle current < 5 mA

Current limit 8 A/ch max, total 12 A

Current trip delay 30 ms

Ramps 0-3 sec

Operating temp. 5 ... 40 °C

Connector type Molex Mini-Fit 6 pin

Weight Controller: 430 g

NiMH Battery Charger: 430 g Li-Ion Battery Charger: 410 g Battery: 530 g (Li-lon: 400 g)

Battery Capacity NiMH: 1400 mAh

Li-lon: 2150 mAh

System Components

Controller

Brackets

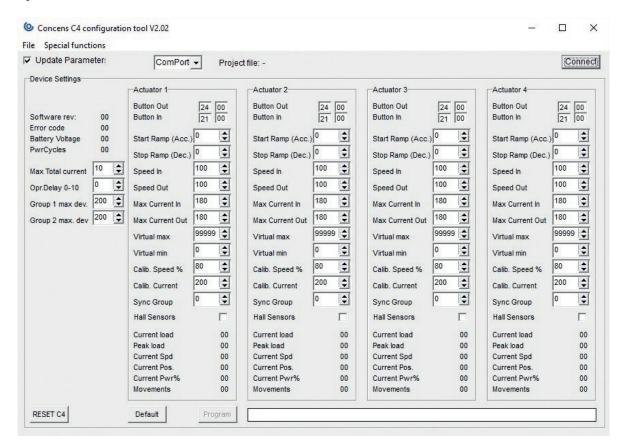
Handsets

Customizable Foils

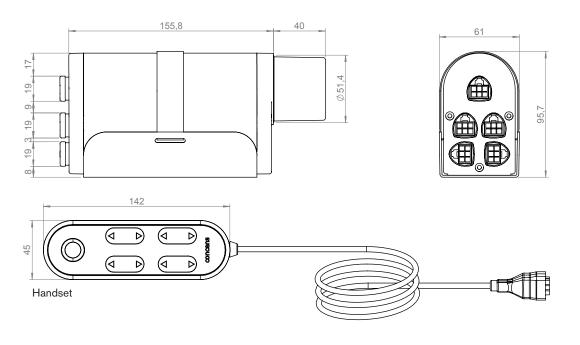
Battery Charger

Battery

Electrical Connections

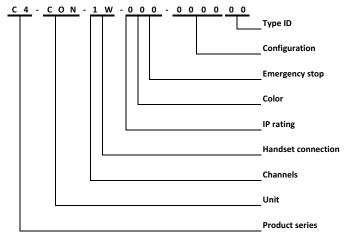


- 1 Actuator 1
- 2 Actuator 2
- 3 Actuator 3
- 4 Actuator 4
- (5) Handset, External Power Emergency Stop

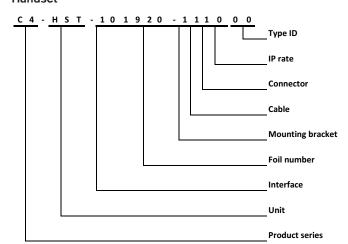


System Parameters

Mechanical Dimensions

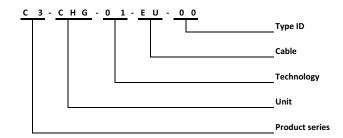


7



C4 Item Number Combination


Controller


Handset

Supply

Charger

C4 Accessories

C4-PROG Programming-cable for the C4 controller

C4-YCBL Splitter-cable for the C4 controller

C4-LOCK Clip for securing the C4 controller in the mounting bracket.

4

Disclaimer

- Concens products are continuously developed, built and tested for highest requirements and reliability but it is always the
 responsibility of the customer to validate and test the suitability of our products in a given application and environment.
- We do our utmost to provide accurate and up-to-date information at all times. In spite of that, Concens cannot be held responsible for any errors in the documentation. Specifications are subject to change without prior notice.

For more information, please visit our website at www.concens.com

Concens A/S
Øresundsvej 7
DK-6715 Esbjerg N

Denmark

F +45 76 10 50 10 E info@concens.com VAT DK10132266

T +45 70 11 11 31